

Gas Sensing Solutions Ltd

FlameIR-ME1 Methane Sensor Product Presentation

İSweek www.isweek.com Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China Tel: + 86-755-83289036 Fax: + 86-755-83289052 E-mail: sales@isweek.com

GSS Introduction

4

gas sensors

Global footprint with world-wide network of direct sales, distributors and representatives, providing expert customer support

Unique vertically integrated capability, with in-house manufacturing of infra-red light emitting diode (LED) sources, enabling GSS to create the world's lowest power and highest speed advanced infra-red LED optical

Leading designer and manufacturer of advanced optical gas sensors

GSS gas sensors are used by leading OEMs in a diverse range of applications including *medical, safety, environmental, agricultural and industrial applications* to detect and control pollutant, hazardous or health indicator gases

State-of-the-art CO₂ and CH₄ NDIR family of gas sensors delivering world-class accuracy, responsiveness and power consumption

1 . . .

2

Our Uniqueness

- World's only independent gas sensor company to manufacture exotic infra-red LEDs in-house, allows us to optimise LED performance for our gas sensors
- **Rich history of innovation and industry first's** in CO₂ gas sensors now being applied to the methane sensor market
- Built-on >15 years of experience in infra-red LEDs, sensor optics, low power electronics and gas testing
- Vast experience of end-applications and sensor optimisation

Leverage in-house LEDs, optimised for our advanced gas sensors, backed up by world-class IP in optics, gas sensor design, low power electronics and production gas testing

GSS Technology

Desirable Attributes	Power Consumption	Responsiveness/ Speed	Dynamic Range	Multiple Gases	Robust and Long Life	Easy to Use
GSS Solid-State Infra-Red LED	Intrinsically efficient at converting electrons to photons – always low power	Measurements done at the speed of light, limited only by companion electronics	Capable of measuring from parts per billion to 100%	Can detect CO ₂ , CO, N ₂ O, NH ₃ (ammonia), C ₂ H ₄ , (ethylene), CH ₄ (methane) and other similar carbon based flammable gases	Insensitive to temperature, humidity and vibration, very long operating life, do not wear out or degrade	Immune to poisoning by contaminant gases
Other Traditional Types of Gas Sensor Technology (infra- red lamp, chemical, pellistors, photo- ionisation)	Use lots of power – incompatible with emerging need for battery powered wireless devices	Slow to respond to changing gas levels - incompatible with emerging needs, particularly medical	Poor dynamic range, and poor accuracy in real-world applications	Typically specific to one gas type - not easily adapted	Often degrade over time, requiring expensive and time consuming maintenance, or replacement	Easily poisoning by other contaminant gases

GSS optical infra-red sensors the best technology for flammable gas detectors, and in-house manufactured LEDs give GSS a performance and cost advantage

Gas Detection Potential

- Gases absorb light energy at different wavelengths, depending on the chemical bonds in the gas
- The amount of energy absorbed by the target gas is proportional to the concentration
- LEDs can be tuned to generate different wavelengths, to specifically target the gas on interest

GSS Sensor Elements

Sensor Overview

Gas Chamber

- In-house optical path design, typically manufactured in polycarbonate plastic
- Gold coated for superior long term reliability and optical efficiency

Solid State LED Technology

 Solid state LED light source and photodiode detector, manufactured in-house

Optics Interface Electronics

• Low noise and low-power analogue

Embedded Microprocessor, memory and PMU

Low-power focused

GSS Products

FlameIR-ME1 Product Sensor Details

08 March 2022

FlameIR-ME1 Introduction

The *FlameIR®-ME1* is an ultra-low power NDIR CH₄ sensor using state-of-the-art *solid-state LED optical* technology

The FlameIR[®]-ME1 calibrated for up to 0-5% methane (100% LEL)

FlameIR[®]-ME1 consumes ~**3.6mW average** (or lower at reduced sample periods), making it compatible with mains powered or wearable applications

The FlameIR[®]-ME1 has typically better than **0.01% + 3% of reading accuracy** over the full scale range of the sensor

The FlameIR[®]-ME1 features a *built-in zero-tracking* function to maintain CH₄ measurement accuracy over the lifetime of the product

The FlameIR[®]-ME1 will be certified intrinsically safe to **ATEX II GD Ex ia IIC T4 Gb**

FlameIR-ME1 Target Markets

	Industrial safety	 Any industry using hydrocarbons as part of a process Confined space entry safety checks Mining
	Building industry	 Brown field site developments often require permanent gas monitoring Waste dump monitoring Housing and tower block gas leakage monitors
	Gas distribution	 Permanent monitoring and personal safety Confined space leak detection Wearable safety monitors Unattended pollution monitors
	Water industry	Confined space entryWaste water treatment works
मिमम	Shipping	 Confined space entry Cargo monitoring
St	Environment	 Pollution monitors Agriculture safety Landfill monitoring

FlameIR-ME1 Block Diagram

- UART or I²C digital interface, selectable at factory
- Digital or analogue outputs (default digital only, programmable analogue output)

FlameIR-ME1 Feature Set

Gases

- Calibrated at the factory for up to 5% (100% LEL) methane
- Can be re-calibrated for other flammable gases (propane, butane, ethane)
 - User programmable multi-point and slope re-calibration possible
- No-need for on-going calibration (only yearly re-zeroing)

Measurement Rate and Responsiveness

- 1.28 seconds per measurement
- Time to first reading ~ 16 seconds (assumes 12 measurements per reading, user programmable)

Environmental Compensations

- Designed to be unaffected by humidity due to special design techniques
- Active real-time temperature compensation
- Ability to adjust reading dependent on ambient pressure levels

Sensor Area Classification

Category 1: (aka Zone 0 – FlameIR-ME1)

• Equipment intended for high-risk areas where an explosive atmosphere is present long periods.

Category 2: (aka Zone 1)

• Equipment intended for medium-risk areas where an explosive atmosphere may occur under normal operating conditions.

Category 3: (aka Zone 2)

• Equipment intended for areas where an explosive atmosphere is only likely under abnormal circumstances

• Intention is to certify the FlameIR-ME1 sensor to ATEX II 1GD Ex ia IIC T4 Gb

ATEX Only		Ex ia	IIC	Т4	Gb		
II	1	GD					
Device Group	Device Category	Surrounding Atmosphere	Explosion Protected	Protection Concept	Equipment Grouping	Temperature Class	Equipment Protection Level
1: Devices to be used in mines II: Devices to be used in areas having explosive gases, liquids or dust	M1: Mines, required to remain functional in the presence of an explosive atmosphere M2: Mines, must be de-energised in the presence of an explosive atmosphere Gas 1: Zone 0 (gas) 2: Zone 1 (gas) 3: Zone 2 (gas)	G: Gas D: Dust		Gas d – Flameproof enclosure e – Increased safety n – Sparking/no-sparking p – Pressurised o – oil immersion q – Powder filled m – Encapsulated i – intrinsic safety	Group I – Mines Group II – Explosive gas other than mines IIA = Propane IIB = ethylene or propane IIC = Hydrogen, ethylene, propane	Gas Temperature class and maximum surface temperature T1 – 450°C T2 – 300°C T3 – 200°C T4 – 135°C T5 – 100°C T6 – 85°C	Ma – Very high level of protection, even when left energised (mines) Mb – High level of protection de- energised (mines) Ga – Very high level (gas) Gb – High level (gas) Gc – Enhanced (gas)
	Dust Zone 20 (dust) Zone 21 (dust) Zone 22 (dust)			Dust m – Encapsulated t - Protection by enclosure pD - Pressurisation	Group III – Explosive dust other than mines IIIA – Combustible dust IIIB – Non-conductive dust (and combustible gas) IIIC – Conductive dust (and for non-conductive and combustible dust)	Dust Maximum surface temperature with tested dust layer	Da – Very high level (dust) Db – High level (dust) Dc – Enhanced (dust)

FlameIR-ME1 Package

16 Strictly Confidential - Owner JH

08 March 2022

GSSFlameIR-ME1 Parametric Performance*

Gas Sensing Solutions

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
			0		5.0	%vol
Accuracy		@25°C		±(0.01%, +3% of reading)		%vol
Time to First Reading After Power-On		Dependent on filter setting, typ. @ 12 measurements per reading		16		Secs

SETTING	SYMBOL	TEST CONDITIONS	Supply Voltage		Average Power
			V	l (mA)	mW
Sensor Active, measurements		Default settings (un-optimised)	3.3	1.1	3.6
@ 1.28 per second					

* All parameters actual measured performance

FlameIR-ME1 Methane Sensor – Temperature Performance

Performance Over Temperature (@ 5% methane)

- Engineering samples stable and accurate over temperature, <±(0.01% +3% of reading)
- Well within IEC standard requirements and compares favourably versus competition

FlameIR-ME1 Methane Sensor – RH Performance

Performance Over Relative Humidity (Green Line)

- Engineering samples stable and accurate over humidity, minimal impact on performance due to RH variation
- Well within IEC standard requirements (Hi and Lo limits on graph)

FlameIR-ME1 Features and Benefits

Market Requirements	GSS Product Features	Benefits
Long Battery Life	~3.6mW Sensor Power Consumption @ stated accuracy	Long-term unattended battery powered operation
Measurement Accuracy	±(0.01% + 3% of reading) tested accuracy out-of- the-box experience	Specified and tested accuracy, guaranteed by GSS
Ease of Use	Automatic zeroing with no user intervention	Simple to setup in the field
Multiple Gases	Re-programmable to measure other flammable gases or mixtures	Configurable in the field to measure other flammable gases
Low Maintenance	Low drift performance, reducing need for on- going span calibration	<1 per year calibration schedule for stated accuracy
Robust	Designed for stable and accurate operation, insensitive to shock and vibration	Suitable for portable applications with poor handling
Multiple Interface Modes	UART, I ² C or Analogue Output	Suitable for use in multiple sensor applications

FlameIR-ME1 Methane Gas Sensor Competitive Comparisons

08 March 2022

Methane Sensor Power and Accuracy Comparison

Methane NDIR Sensor Competition Review

Property/Sensor	Accuracy at ambient (%vol)	Temperature range (°C)	Ext temp accuracy	Pressure range (mbar)	Pressure accuracy	Supply voltage Nom (range) V	Power
GSS	±0.01% +3% of rdg)	-20 to +50 or -40 to +60	±(0.015%, +6% of reading)	800 - 1200	tbd	2.97-3.5	~3.6mW @3.3V
SGX INIR-ME	±0.06% or ±6%rdg	-20 to +55	±0.01% < 2% ±0.02% < 4% ±0.05% < 5%	800 - 1200	Not in DS	3.3 (3.2 – 5.25)	115mW @ 3.3V
MIPEX-02-X-X-X.1 X (RX)	±0.1 or ±5%rdg	-40 to +60	±0.4% or ±20%rdg	800 - 1200	±0.2% or ±30%rdg	(3 – 5)	5mW @3.3V
Dynament MSH2ia	±10% rdg	-20 to +50	±0.1% or ±10%rdg < 50%FS, ±10% rdg > 50%FS or 2%FS if greater	±5% of cal pressure		(3 – 5)	45mW @3V
Cubic NDIR CH4 Sensor SJH	±(0.05% + 5%rdg)	-40 to +70	Not in DS	Not in DS	Not in DS	(3.3 – 6)	200mW @3.3V
Nenvitech IRNET-P	±1%FS < 25%FS ±2%FS <50%FS ±5%FS >50%FS	-40 to +60	±3%FS < 50%FS ±5%FS > 50%FS	800 - 1200	0.1 to 0.2% per mbar	(3 – 5.5)	275mW @3.3
Citytech IRcelCH4	±(0.1% + 4%rdg)	-20 to +50	As ambient	700 - 1300	Not in DS	3.3	100mW @3.3V
Nevadanano MPS Methane	±0.025%	Limited, not defined -40 to +75	±0.13%	800 - 1200	Not defined	3.3 - 5.0 ±5%	29mW

Safety Certifications Comparisons

	ΑΤΕΧ	IECEx	UL	SIL	Conditions
GSS	✓ Ex ia IIC T4 Gb	✓			Intrinsically safe due to use of LEDs, no need for flameproof enclosure
SGX INIR-ME	✓ Ex db IIC Gb	✓			1.5W max power thermal resistance Impact Water
MIPEX-02-X-X-X.1 X (RX)	✓ Ex ia IIC Ga	✓	✓ Class 1, Div 1 Group A,B,C,D		
Dynament MSH2ia	✓ Ex db IIC Gb		✓ Class 1, Div 1		Ui = 6V Pi = 0.8W Ci = 4.105µF Li = 0mH
Cubic NDIR CH4 Sensor SJH		✓ Ex ia IIC T4 Ga			
Nenvitech IRNET-P				\checkmark	
Citytech IRcelCH4	✓ Ex d IIC T4				-20 to +55°C Pmax = 1.4W
Nevadanano MPS Methane					
ATEX (EX)					
db = Flameproof enclosure ia = intrinsic safety		Max. Surface Temp T6 = 85deg C	 Zone 0 = High risk, always explosive atmosphere 		
IIC = Explosion Group (almost all gases)		T5 = 100 deg C T4 = 135 deg C	1 = Explosive ati 2 = Explosive ati	mosphere likely to occu mosphere not likely to	ar occur
Ga = Equipment pro	tection level Zone 1,2,3	13 = 200deg C			

GSS Methane Sensor Benefits

Market Requirements	Best Competitor	GSS Benefits
Long Battery Life, Small Battery	$\checkmark \checkmark$	✓✓✓ Lowest Power
Measurement Accuracy	$\checkmark\checkmark$	✓✓✓ Best Accuracy
Ease of Use	✓	✓✓✓ No In-Use Zeroing Required
Low Maintenance	\checkmark	$\checkmark \checkmark \checkmark$ Calibration Simple to Use, Yearly
Robust	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$ Insensitive to Shock and Vibration
Multiple Interface Modes	√	$\checkmark \checkmark \checkmark$ UART, I ² C, Analogue Options

Sample Schedule

Pre-Production Samples

• End Q2 2022

Production Volumes

• End Q3 2022

CO₂ and CH₄ Product Family Summary

Options	CozIR®	ExplorIR [®]	SprintlR®	FlameIR®
Gas	CO ₂	CO ₂	CO ₂	CH ₄
Measurement Range	Up to 1%	Up to 100%	Up to 100%	Up to 5% (100% LEL)
Accuracy (Typ. @ 25°C)	±(30ppm + 3% RDG)	±(70ppm + 5% RDG)	±(70ppm + 5% RDG)	±(0.01% + 3% of RDG)
Sample Rate	2 per second	2 per second	Up to 50 per second	1.28 per second
Repeatability	±10ppm	±10ppm	±10ppm	-
Temperature Stability	2.5ppm/°C	2.5ppm/°C	2.5ppm/°C	-
Response Time (T ₅₀)	Approx. 30 seconds (diffusion)	Approx. 30 seconds (diffusion)	3.6 seconds @0.1l/min	Approx. 30 seconds (diffusion)
Digital Interface	UART or I ² C	UART	UART	UART or I ² C
Analogue Voltage Output	Yes (Option)	Yes (Option)	No	Yes
Operating Temperature Range	0°C to +50°C or -25°C to +55°C	0°C to +50°C or -25°C to +55°C	0°C to +50°C	-20°C to +50°C or -40°C to +60°C
Operating Voltage	3.25V to 5.5V	3.25V to 5.5V	3.25V to 5.5V	3.3V
Power Consumption (active)	<110uW per reading (Blink)	<3.5mW	<100mW	<3.6mW
Product Options	T and RH (option)	T and RH (option)	None	UART or I ² C, gas type

Summary

Sensor Attributes

New Methane Sensor Uses LEDs

LEDs super responsive

Sensor maintains accuracy over temperature and humidity

Ultra-low power consumption

FlameIR-ME1

FlameIR-ME1 Highlights

New methane sensor uses solid-state infrared LEDs to deliver ultra-low power combined with high accuracy (better than 0.01% + 3% of reading)

LEDs turn-on instantly providing initial measurements within ~1.5s, with time to first reading ~16s (12 readings per measurement)

Sensor has been designed to tolerate temperature and humidity variations, maintaining accuracy over a wide range of conditions

Power consumption <5mW with potential to reduce even further under user control, making it suitable for wearable applications

New methane sensor best in class for power consumption and accuracy, available end Q1 2022