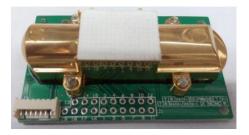
Intelligent Infrared Carbon Dioxide Module (Model: MH-Z14A)


User's Manual V1.2

Issue Date. May 5st,2019

MH-Z14A NDIR CO2 Module

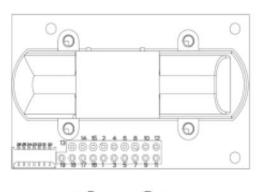
1. Profile

MH-Z14A NDIR Infrared gas module is a common type, small size sensor, using non-dispersive infrared (NDIR) principle to detect the existence of CO_2 in the air, with good selectivity, non-oxygen dependent and long life. Built-in temperature sensor can do temperature compensation; and it has digital output, analog voltage output and PWM output. This common type infrared gas sensor is developed

Sweek.com

by the tight integration of mature infrared absorbing gas detection technology, Precision optical circuit design and superior circuit design.

3. Main Features

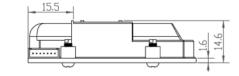

Chamber is gold plated, water-proof and anti-corrosion High sensitivity, low power consumption Good stability Temperature compensation, excellent linear output Multiple output modes: UART, DAC, PWM Long lifespan Anti-water vapor interference, anti-poisoning

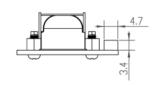
2. Applications

*HVAC refrigeration	*Air cleaner device	*Indoor air quality monitoring
*Smart home	*Ventilation system	*School

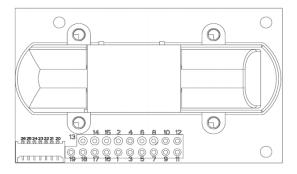
4. Main technical parameters

Model No.	MH-Z14A			
Detection Gas	CO2 gas			
Working voltage	4.5 V ~ 5.5V DC			
Average current	< 60 mA (@5V supply)			
Peak current	150mA (@5V supply)			
Interface level	3.3 V (5V compatible)			
Measuring range	0~10000ppm optional			
	Serial port(UART) (TTL)			
Output signal	PWM			
	Analog output (DAC) (default is 0.4~2V)			
Preheat time	3min			
Response Time	T90 < 120s			
Working				
temperature	-10°C ~ 50°C			
Working humidity	0~95%RH(no condensation)			
Weight	15 g			
Lifespan	>5 years			
Dimension	57.5×34.7×16mm(L×W×H)			




iSweek www.isweek.com

Target Gas	Measuring Range	Accuracy
	0~2000ppm	±(50ppm
Carbon Dioxide (CO2)	0~5000ppm	+5%reading value)
(002)	0~10000ppm	±10%reading value


5. Structure

6. Definition for pins

PIN No	Description
1,15,17,23	Power positive (Vin)
2,3,12,16,22	Power negative (GND)
4,5,21	Analog output
6,26	PWM
8, 20	HD(for zero-point calibration, low level
	lasting for over 7 sec is effective)
7,9	NC
11, 14,18,24	UART (RXD) TTL data input
10,13,19,25	UART (TXD) TTL data output

7.Three Output ways

• PWM output

Take 0~2000ppm for example				
CO2 output range	0~2000ppm			
Cycle	1004ms±5%			
Cycle start high level output	2ms(theoretical value)			
The middle cycle	1000ms±5%			
cycle end low level output	2ms(theoretical value)			
CO2 concentration: Cppm=2000×(TH-2ms)/((TH+TL-4ms)			
C _{ppm} : CO2 concentration could be calculated b	by PWM output			
TH high level output time during cycle				
TL low level output time during cycle				
	1004 m8			
O PPM	2m5 2m5 4m6 4m6			
8 PPM I				
1992 PPM				
1996 PPM	······································			
2000 PPM	202m8 22m9 1004 mB →			

Analog voltage output Vo

The Vout is proportional to the gas concentration,0.4~2V output stands for 0 to full scale. C ppm=(Vo(V)-0.4V)*detection range(ppm)/(2.0V-0.4V)

•Serial port output (UART)

Hardware connection

Connect module's Vin-GND-RXD-TXD to users' 5V-GND-TXD-RXD. (Users must use TTL level. If RS232 level, it must be converted.)

Software setting

Set serial port baud rate be 9600, data bit 8 bytes, stop bit 1byte, parity bit null.

Command List:

0x86	Gas concentration
0,00	
0x87	Calibrate zero point (ZERO)
0x88	Calibrate span point (SPAN)
0x79	ON/OFF Self-calibration function for zero point
0x99	Detection range setting

0x86- Read CO2 concentration

Sending c	ommand							
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	Reserved	Command	-	-	-	-	-	Checksum
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79
Return val	ue							
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	Command	Concentration	Concentration	-	-	-	-	Checksum
		(High 8 Byte)	(Low 8 Byte)					
0xFF	0x86	HIGH	LOW	-	-	-	-	Checksum

CO2 concentration = HIGH * 256 + LOW

For example:

Send command FF 01 86 00 00 00 00 00 79, Return value FF 86 02 20 00 00 00 00 58

How to calculate concentration: convert hexadecimal 02 into decimal 2, hexadecimal 20 into decimal 32, then 2*256+32=544ppm

0x79- On/Off Self-calibration for Zero Point

Send command-No return value

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	Reserved	Command	-	-	-	-	-	Checksum
0xFF	0x01	0x79	0xA0/0x00	0x00	0x00	0x00	0x00	Checksum

For example:

ON this function, send command: FF 01 79 A0 00 00 00 00 E6

OFF this function, send command: FF 01 79 00 00 00 00 00 86

NOTE: This function is on when Byte3 is 0xA0 while this function is off when Byte3 is 0x00.

Default status is "this function is on".

Send comr	mand-No return	value							
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	
Start	Reserved	Com	Reserved	Detection	Detection	Detection	Detection	Check	
Byte		mand		range 24~32	range 16~23	range 8~15	range 0~7	sum	
				bit	bit	bit	bit		
0xFF	0x01	0x99	0x00	Data 1	Data 2	Data 3	Data 4	Check	
								sum	
Note: Dete	Note: Detection range should be 0~2000, 0~5000, or 0~10000ppm.								
For examp	For example: set 0~2000ppm detection range, send command: FF 01 99 00 00 00 07 D0 8F								
	set 0~10000)ppm det	ection range, se	nd command: Fl	= 01 99 00 00 00 2	7 10 2F			

iSweek www.isweek.com

Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China

Tel: + 86-755-83289036 Fax: + 86-755-83289052

1. Checksu	m calculatio	on method						
Checksum	= (Negative ((Byte1+Byte2+	Byte3+Byte4+	Byte5+Byte6+Byte	te7))+1			
For exampl	e:							
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	Reserved	Comman	-	-	-	-	-	Check
		d						sum
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	Check
								sum
Calculating	Checksum:							
1、Add Byt	te 1 to Byte 7	': 0x01 + 0x86	+ 0x00 + 0x00) + 0x00 + 0x00 +	0x00 = 0x87			
2、Negativ	e: 0xFF - 0x8	87 = 0x78						
3、Then+1	: 0x78 + 0x0	01 = 0x79						
С	language							
char getC	heckSum(char *packe	et)					
{								
char	i, checksu	m;						
for(i	= 1; i < 8;	i++)						
{								
	checksum	+= packet[i]	•					
}								
chec	ksum = 0x	ff – checksu	m;					
chec	ksum += 1	,						
retur	n checksu	m;						
}								

8.Zero Point Calibration

About zero point calibration:

This module has three methods for zero point calibration: hand-operated method, sending command method and self-calibration. All the zero point is at 400ppm CO2.

Hand-operated method: Connect module's HD pin to low level(0V), lasting for 7 seconds at least. Before calibrating the zero point, please ensure that the sensor is stable for more than 20 minutes at 400ppm ambient environment.

Sending command method:

Zero and Span point calibration can be achieved by sending a calibration command to the sensor via the serial port (URAT). Zero and SPAN point calibration commands are as follows:

0x87-ZERO	POINT CALIB	RATION						
Send comm	and-no returr	n value						
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	Reserved	Command	-	-	-	-	-	Checksum
0xFF	0x01	0x87	0x00	0x00	0x00	0x00	0x00	0x78
For example	2:			· · ·			·	
Put the mo	dule in 400pp	om standard C	O2 gas or clean outdoo	or environment for	at least 20 n	nin;		
Send comm	and FF 01 87	00 00 00 00 0	0 78 for zero point cali	bration.				
Caution: Fo	rbid sending 1	this command	l in other environment	t except above.				
0x88- SPAN	I POINT CALIB	RATION						
Send comm	and-no returi	n value						
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	Reserved	Command	Span(High 8 Byte)	Span(low 8 Byte)	-	-	-	Checksum
OxFF	0x01	0x88	HIGH	LOW	0x00	0x00	0x00	Checksum
For example	e:	•					·	
Put the mo	dule in 2000p	opm CO2 gas, s	stability for 20 min at l	east.				
If span valu	ie is 2000ppm	, then HIGH=	2000/256, LOW = 2000	% 256				
Send comm	nand FF 01 88	07 D0 00 00 0	00 A0 for span calibrati	ion				
Caution: Ze	ro calibration	should be do	one before span calibra	ition.				
It is recomm	nended to us	e 2000ppm as	the SPAN calibration	value.				

If lower value as the span value is needed, choose a value above 1000ppm.

Self-calibration:

After the module works for some time, it can judge the zero point intelligently and do the zero calibration automatically. The calibration cycle is every 24 hours since the module is power on. The zero point is 400ppm. This method is suitable for office and home environment, not suitable for agriculture greenhouse, farm, refrigerator, etc.. If the module is used in latter environment, please turn off this function.

9. Notes

9.1 Please avoid the pressure of its gilded plastic chamber from any direction, during welding, installation, and use.

9.2 When placed in small space, the space should be well ventilated, especially for diffusion window.9.3 The module should be away from heat, and avoid direct sunlight or other heat radiation.

iSweek www.isweek.com

9.4 The module should be calibrated termly, the suggested period is not longer than 6 months.

9.5 Do not use the sensor in the high dusty environment for long time.

9.6 To ensure the normal work, the power supply must be among 4.5V~5.5V DC rang, the power current must be not less than 150mA. Out of this range, it will result in the failure of the sensor. (The concentration output is low, or the sensor can not work normally.)

9.7 During the zero point calibration procedure by manual, the sensor must work in stable gas environment (400ppm) for over 20 minutes. Connect the HD pin to low level (0V) for over 7 seconds.9.8 Forbid using wave soldering for the sensor.

9.9 When soldering with soldering iron, set the temperature to be (350 \pm 5) °C, and soldering time must be within 3 seconds.