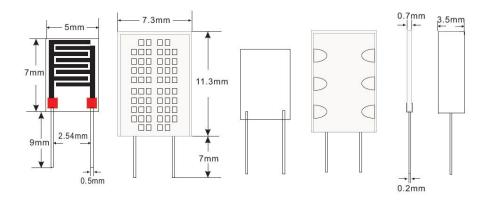
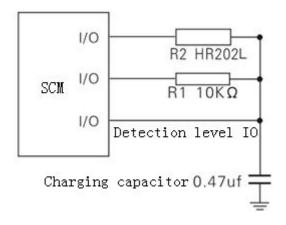
Humidity Sensitive Resistor


HR202L Product Manual

1. Product Overview

HR202L humidity resistance is the use of a new type of organic polymer materials moisture sensitive components, with a sense of wide humidity range, fast response, strong anti-pollution, no heat cleaning and long-term stable and reliable performance, and many other features.

2. Dimensions (unit: mm)


3. Applications

Display for temperature and humidity meter, temperature and humidity gift table, atmospheric environmental monitoring, industrial process control, agriculture, measuring instruments and other applications.

4. Product Highlights

Compact and handsome appearance, good long-term stability, wide temperature and humidity measuring range, high and low temperature and humidity measurement accuracy.

5. Circuit

6. Parameters

Fixed Voltage: 1.5V AC (Max,Sine wave) Fixed power: 0.2mW (Max,Sine wave)

Operating Frequency: 500Hz~2kHz

Temperature: $0\sim60\,^{\circ}\mathrm{C}$

Humidity: 95%RH 以下(Non-condensing)

Wet hysteresis difference: ≤2%RH

Response time: Hygroscopic, ≤20S; De Wet≤40S

Stability: ≤1%RH/year

Humidity detection accuracy: ≤±5%RH

Relative humidity

Conditions: at25°C 1kHz 1V AC ((Sine wave)

Humidity: 60%RH Central value: 31 KΩ

Impedance values range: $19.8\sim50.2~\text{K}\Omega$ Humidity detection accuracy: $\pm5\%\text{RH}$

7. Standard test conditions

The atmosphere, the temperature 25 °C, the number of measured frequency 1kHz, the measured voltage 1V AC (sine) as a reference. Characteristic measurement, the humidity sensor in the first pre-determined 25 °C / 0% RH of the drying air for 30 minutes, and means for generating the humidity Humidity 60% RH, a humidity sensor into the measured impedance value after 15 minutes. Measurement apparatus:

Split humidity generator: AHR – 1Type

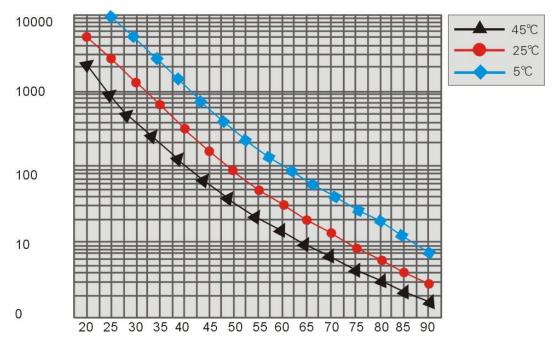
LCR bridge: TH2810A

Measured by line: A shielded cable

Stability Test:

Number	Project	Test methods	Specification Value			
1	Pin strength	0.5kg lead Rally 10 seconds	No damage, lead off, the electrical			
			characteristics of normal			
2	Impact resistance	Hard texture board 1m height repeated three times natural fall	No damage, lead off, the electrical			
	impact resistance	That texture board Thi height repeated three times natural fair	characteristics of normal			
3	Shock resistance	Frequency Number 10 \sim 55Hz, amplitude 1.5mm(10 \sim 55Hz \sim	No damage, lead off, the electrical			
	Shock resistance	10Hz) direction of the X-Y-Z 2 hours each vibration test	characteristics of normal			
4	Heat resistance	Temperature 80 $^{\circ}$ C, humidity of 30% RH	± 5% RH or less			
	Treat resistance	In air for 1000 hours, following	± 3/0 KH 01 less			
5	Cold	Temperature 10 °C, humidity 70% RH	± 5% RH or less			
3	Cold	In air for 1000 hours, following	± 3/0 KH 01 less			
6	Moisture	Temperature 40 °C, humidity 90% RH	± 5% RH or less			
	resistance	In air for 1000 hours, following				
7	Temperature	To stand at 0 $^\circ \! \mathbb{C}$ 30 minutes and then transferred for 30	± 5% RH or less			
	cycling	minutes at 50 $^{\circ}\text{C}$, Then put 0 $^{\circ}\text{C}$ under 30 minutes, 5 cycles	± 3/0 KH OI ICSS			
8	Humidity cycling	25 °C, allowed to stand at 30% RH 30 minutes.				
		For 30 minutes and then transferred to 90% RH,then placed	± 5% RH or less			
		under 30% RH 30 minutes, the cycle five times.				
9	Resistant to organic solvents	Organic solvents at room temperature				
		Ethanol gas 30 minutes	± 5% RH or less			
	organic solvents	Acetone gas 30 minutes				
10	Diagram	General indoor (normal temperature and humidity)	+ 50/ DII 1			
	Place power	1kHz,5Vp-p square wave connection 1000 hours placement.	± 5% RH or less			

- 3 -


Size 60% RH humidity value as a reference the amount of change.

After the completion of each test, a humidity sensor placed in the normal room temperature and humidity for 24 hours in air, the amount of change measured with a moisture.

8. Relative humidity - impedance characteristics

	0℃	5℃	10℃	15℃	20℃	25℃	30℃	35℃	40℃	45℃	50℃	55℃	60℃
20%RH				10M	6.7 M	5.0 M	3.9 M	3.0 M	2.4 M	1.75 M	1.45 M	1.15 M	970K
25%RH		10 M	7.0 M	5.0 M	3.4 M	2.6 M	1.9 M	1.5 M	1.1 M	880K	700K	560K	450K
30%RH	6.4 M	4.6 M	3.2 M	2.3 M	1.75 M	1.3 M	970K	740K	570K	420K	340K	270K	215K
35%RH	2.9 M	2.1 M	1.5 M	1.1 M	850K	630K	460K	380K	280K	210K	170K	150K	130K
40%RH	1.4 M	1.0 M	750K	540K	420K	310K	235K	190K	140K	110K	88K	70K	57K
45%RH	700K	500 K	380 K	280 K	210 K	160 K	125 K	100 K	78 K	64 K	50 K	41 K	34 K
50%RH	370 K	260 K	200 K	150 K	115 K	87 K	69 K	56 K	45 K	38 K	31 K	25 K	21 K
55%RH	190 K	140 K	110 K	84 K	64 K	49 K	39 K	33 K	27 K	24 K	19.5 K	17 K	14 K
60%RH	105 K	80 K	62 K	50 K	39 K	31 K	25 K	20 K	17.5 K	15 K	13 K	11 K	9.4 K
65%RH	62 K	48 K	37 K	30 K	24 K	19.5 K	16 K	13 K	11.5 K	10 K	8.6 K	7.6 K	6.8 K
70%RH	38 K	30 K	24 K	19 K	15.5 K	13 K	10.5 K	9.0 K	8.0 K	7.0 K	6.0 K	5.4 K	4.8 K
75%RH	23 K	18 K	15 K	12 K	10 K	8.4 K	7.2 K	6.2 K	5.6 K	4.9 K	4.2 K	3.8 K	3.4 K
80%RH	15.5 K	12.0 K	10.0 K	8.0 K	7.0 K	5.7 K	5.0 K	4.3 K	3.9 K	3.4 K	3.0 K	2.7 K	2.5 K
85%RH	10.5 K	8.2 K	6.8 K	5.5 K	4.8 K	4.0 K	3.5 K	3.1 K	2.8 K	2.4 K	2.1 K	1.9 K	1.8 K
90%RH	7.1 K	5.3 K	4.7 K	4.0 K	3.3 K	2.8 K	2.5 K	2.2 K	2.0 K	1.8 K	1.55 K	1.4 K	1.3 K

9. Electrical impedance R $(K\Omega)$

10. Sample Code

-4-

```
/*******
    SCM: SN8P2501B
   Crystal oscillator:Built-in16M 4Divide
    Subroutine Description:
     interrupt IntIn()
                         Timer interrupt function
   StartOneTImeSample(void)
                              To perform a detecting operation
    *******
    typedef struct
        unsigned char u8WihtchIOCharge;
        unsigned long u16ChargeTimeIo;
                                         //Charging time fixed resistor
        unsigned long u16ChargeTimeHumi; //Humidity resistance charging time
        }ChargeTyPe;
              CHARGE HUMIDITY IO HIGH()
                                                 FP21 = 1
    #define
                                                  FP21 = 0
   #define
              CHARGE HUNIDITY IO LOW()
   #define
              CHARGE_IO_HIGH()
                                                                     FP20 = 1
    #define
             CHARGE_IO_LOW()
                                                                 FP20 = 0
             CHARGE IO HI()
                                                                  P2M = 0X00
   #define
                                                                             20
    #define
             F data
     _interrupt IntIn()
          WDTR = OX5A;
                         //Watchdog
              TOC = F data;
              m_st_ChargeType.u8WihtchIOCharge++;
              if (m st ChargeType.u8WihtchIOCharge&0x80)
                                                         //Hygristor charge
                        if (m st ChargeType.u8WihtchIOCharge >= 0x84) //Low pulse ratio of 3:
1
                         {
                               CHARGE HUNIDITY IO LOW();
                               m_st_ChargeType.u8WihtchIOCharge = 0x80;
                        else if(m_st_ChargeType.u8WihtchIOCharge >= 0x81)
                               CHARGE_HUMIDITY_IO_HIGH();
    else
                        if (m_st_ChargeType.u8WihtchIOCharge == 0x01)//Standard Charging
                               CHARGE IO HIGH();
                        else if (m_st_ChargeType.u8WihtchIOCharge == 0x04)//Low pulse ratio of
3: 1
                          {
                               CHARGE IO LOW();
                               m st ChargeType.u8WihtchIOCharge = 0x00;
                          }
```

```
m st ChargeType.u16ChargeTimeIo++;
        FTOIRQ = 0; //clear t0 irq flag
    void StartOneTImeSample(void)
            CHARGE IO HI(); //Pl port into input As a high-impedance
            m st ChargeType.ul6ChargeTimeIo = 0; /// Variable initialization
               if (m st ChargeType.u8WihtchIOCharge&0x80)
                        FP21M = 1;
                                      //Output
                        CHARGE HUNIDITY IO LOW();
              else
                        FP20M = 1; //Output
                        CHARGE IO LOW();
                                        //Stable delay waiting for port
             delay1N(2);
            TOC = F data;
                                            //Remember to load the new values
            FTOENB = 1;//
                                        //Open Timer Automatic measurement
            while(1)
                     if (FP22)
                                            //Charge detection threshold
                            FTOENB = 0;// Threshold to, off timer
                            if (m st ChargeType.u8WihtchIOCharge&Ox80)//Charging time record
humidity sensitive resistor
                                           m_st_ChargeType.u16ChargeTimeHumi =
m st ChargeType.u16ChargeTimeIo;
                               break:
            P2M = 0X23;
            P2 = 0X00;//Discharge
             FP22M = 1;
            FP22 = 0;
             delay1N(100);
             FP22M = 0;
```

11. License Agreement

Without the prior written permission of the copyright holder, shall not in any form or by any means, whether electronic or mechanical (including photocopying), for any part of this manual may be reproduced, nor may its contents be communicated to a third party. The contents are subject to change without notice.

Aosong Electronics Co., Ltd. and third-party ownership of the software, the user may use only the signing of a contract or license to use the software.

14. Warnings and personal injury

Do not use this product as safety or emergency stop devices, and may lead to failure of the product to any other application in personal injury. This product should not be applied unless there

are special purpose or use authorization. Before installation, handling, use or maintenance of the product to the reference product data sheets and application notes. Failure to comply with this recommendation, it may result in death and serious injury. The Company will not assume the resulting injuries and deaths for all damages, and thus exempt from any claims against the company managers and employees and affiliated agents, distributors, etc. that may arise, including: a variety of costs, damages costs, attorneys' fees and so on.