	NO2-A1 Nitrogen Dioxide Sensor		
	Figure 1 NO2-A1 Schematic	agram nsions in millimetres $(\pm 0.1 \mathrm{~mm})$ Bottom View Side View	PATENTED
	PERFORMANCE Sensitivity Response time Zero current Resolution Range Linearity Overgas limit	nA/ppm in 10ppm NO_{2} tgo (s) from zero to 10ppm NO_{2} (33Ω Load Resistor) ppm equivalent in zero air RMS noise (ppm equivalent) (33Ω Load Resistor) ppm NO_{2} limit of performance warranty ppm error at full scale, linear at zero and $10 \mathrm{ppm} \mathrm{NO}_{2}$ maximum ppm for stable response to gas pulse	$\begin{array}{r} -250 \text { to }-650 \\ <50 \\ < \pm 0.4 \\ <0.02 \\ 20 \\ <1.5 \\ 100 \end{array}$
	LIFETIME Zero drift Sensitivity drift Operating life	ppm equivalent change/year in lab air \% change/year in lab air, monthly test months until 80% original signal (24 month warranted)	$\begin{array}{r} <0.05 \\ <-20 \text { to }-40 \\ >24 \end{array}$

ENVIRONMENTAL

Sensitivity @ $50^{\circ} \mathrm{C}$ \% (output @ $50^{\circ} \mathrm{C} /$ output @ $20^{\circ} \mathrm{C}$) @ $5 \mathrm{ppm} \mathrm{NO}{ }_{2} 105$ to 125
Zero @ $-20^{\circ} \mathrm{C} \quad$ ppm equivalent change from $20^{\circ} \mathrm{C}< \pm 0.2$
Zero @ $50^{\circ} \mathrm{C}$ ppm equivalent change from $20^{\circ} \mathrm{C} \quad<0$ to -0.5

H_{2} S sensitivity	\% measured gas @ 20ppm	$\mathrm{H}_{2} \mathrm{~S}$	<-35
Cl_{2} sensitivity	\% measured gas @ 10ppm	$\mathrm{Cl} \mathrm{Cl}_{2}$	<80
NO sensitivity	\% measured gas @ 50ppm	NO_{2}	<-5
SO_{2} sensitivity	\% measured gas @ 20ppm	SO_{2}	<-15
$\mathrm{CO}^{\text {sensitivity }}$	\% measured gas @ 400ppm	CO^{2}	<0.1
H_{2} sensitivity	\% measured gas @ 400ppm	H_{2}	<0.1
$\mathrm{C}_{2} \mathrm{H}_{4}$ sensitivity	\% measured gas @ 50ppm	$\mathrm{C}_{2} \mathrm{H}_{4}$	<0.1
NH_{3} sensitivity	\% measured gas @ 20ppm	NH_{3}	<0.1
CO_{2} sensitivity	\% measured gas @ 5\% volume	CO_{2}	<0.1
O_{3} sensitivity	\% measured gas @ 200ppb	O_{3}	<120

NOTE: all sensors are tested at ambient environmental conditions, with 10 ohm load resistor, unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements.

ísweek www.isweek.com

Add: 16/F, Bldg. \#3, Zhongke Mansion, No. 1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China

NO2-A1 Performance Data

Figure 2 Sensitivity Temperature Dependence

Figure 3 Zero Temperature Dependence

Temperature $\left({ }^{\circ} \mathrm{C}\right)$
Figure 4 Humidity plus Temperature Transient Response

Figure 2 shows the variation in sensitivity caused by changes in temperature.
This data is taken from a typical batch of sensors.

Figure 3 shows the variation in zero output caused by changes in temperature, expressed as ppm gas equivalent, referenced to zero at $20^{\circ} \mathrm{C}$.

This data is taken from a typical batch of sensors.

Figure 4 shows typical sensor outputs for a group of sensors exposed to exhaled breath for 4 cycles over 240 seconds.

This is an extreme test for such sensors and the shift in the base line of no more than 0.5 ppm shows a very strong resistance to this test.

İSweek www.isweek.com
Add: 16/F, Bldg. \#3, Zhongke Mansion, No. 1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China

