Sweek.com

1/3

TOCON_E_OEM

SiC based UV-Index photodetector with integrated amplifier designed to work with customer's cosine correcting dome

GENERAL FEATURES

Properties of the TOCON_E_OEM

- SiC based UV-Index photodetector in TO5 housing
- spectral response compliant to CIEo87 / DIN5050
- designed to work with customer's cosine correcting dome
- o... 5 V voltage output
- 1 UVI results a voltage of approx. 0,5 V
- Applications: UV-Index measurement with very small error <+-3%

What is a TOCON?

A TOCON is a 5 Volt powered UV photodetector with integrated amplifier converting UV radiation into a 0...5V voltage output. The V_{out} pin of the TOCON can be directly connected to a controller, a voltmeter or any other data analyzing device with voltage input.

Information about the UV-Index (UVI)

The UV-Index is an international standard measurement of how strong the ultraviolet (UV) radiation from the sun is at a particular place on a particular day. It is a scale primarily used in daily forecasts aimed at the general public. The UV-Index is calculated by integrating the sun's UV spectrum multiplied with the Erythema action curve (see spectral responsivity). That integral is divided by 25 mW/m^2 to generate a convenient index value, which becomes essentially a scale of o to 10. The Erythema action curve is a wavelength resolved measure of the sunburn danger. It is maximised at 297nm (UVB) and then strongly decreases towards UVA radiation.

Literature: A. F. McKinlay and B. L. Diffey, "A reference action spectrum for ultraviolet induced erythema in human skin" CIE Journal, 6-1, 17-22 (1987)

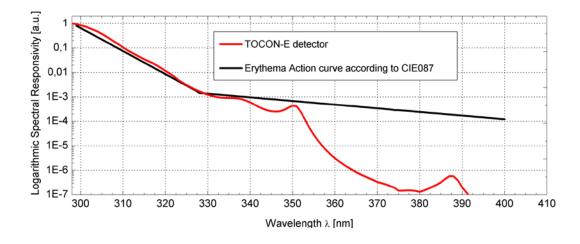
NOMENCLATURE

TOCON_	ABC, A, B, C, blue or GaP	1 10
	Spectral response	Irradiance limits (V_supply=5V, λ = λ_{peak})
	ABC = broadband	1 = 1,8 pW/cm ² 1,8 nW/cm ²
	$\lambda_{\rm max} = 290 {\rm nm} \lambda_{\rm S10\%} = 227 {\rm nm} \dots 360 {\rm nm}$	2 = 18 pW/cm ² 180 nW/cm ²
	A = UVA $λ_{max} = 331 \text{ nm}$ $λ_{syn\%} = 309 \text{ nm} 367 \text{ nm}$	3 = 180 pW/cm ² 1,8 μW/cm ²
	$\mathbf{B} = \mathbf{U}\mathbf{V}\mathbf{B}$	4 = 1,8 nW/cm ² 18 μW/cm ²
	$\lambda_{\rm max} = 280 {\rm nm} \lambda_{\rm S10\%} = 243 {\rm nm} \dots 303 {\rm nm}$	5 = 18 nW/cm ² 18ο μW/cm ²
	C = UVC	6 = 180 nW/cm^2 $1,8 \text{ mW/cm}^2$
	$\lambda_{max} = 275 \text{ nm} \lambda_{S10\%} = 225 \text{ nm} \dots 287 \text{ nm}$	7 = 1,8 μW/cm ² 18 mW/cm ²
	Blue $\lambda_{max} = 445 \text{ nm} \lambda_{510\%} = 390 \text{ nm} \dots 515 \text{ nm}$	8 = 18 μW/cm ² 180 mW/cm ²
	Gap	9 = 180 µW/cm ² 1,8 W/cm ²
	$\lambda_{max} = 445 \text{ nm}$ $\lambda_{S10\%} = 190 \text{ nm} \dots 570 \text{ nm}$	10 = 1,8 mW/cm ² 18 W/cm ²
	E = UV-Index	
	spectral response according to CIEo87	2 = 0 UVI 30 UVI

iSweek www.isweek.com

Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China

Sweek.com


2/3

TOCON_E_OEM

SiC based UV-Index photodetector with integrated amplifier designed to work with customer's cosine correcting dome

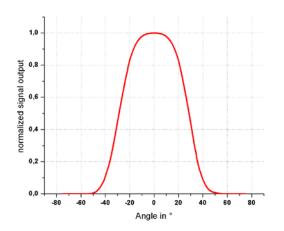
SPECIFICATIONS			
Parameter	Symbol	Value	Unit
Spectral Characteristics			
Approx. Sensitivity (unit is not calibrated)	S _{max}	0,5	V/UVI
Visible Blindness (S _{max} /S _{>405nm})	VB	> 10 ¹⁰	-
General Characteristics (T=25°C, _{Vsupply} =+5 V)			
Supply Voltage	V _{Supply}	2,5 5	V
Saturation Voltage	V_{Sat}	V _{Supply} - 5%	V
Dark Offset Voltage	V _{Offset}	50	μV
Temperature Coefficient at Peak	Tc	< -0,3	%/K
Current Consumption	I	150	μA
Bandwidth (-3 dB)	В	15	Hz
Risetime (10-90%)	t _{rise}	0,182	S
(other risetimes on request)			
Maximum Ratings			
Operating Temperature	T _{opt}	-25 +85	°C
Storage Temperature	T _{stor}	-40 +100	°C
Soldering Temperature (3s)	T _{sold}	300	°C

NORMALIZED SPECTRAL RESPONSIVITY

Sweek www.isweek.com

Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China

Tel: + 86-755-83289036 Fax: + 86-755-83289052

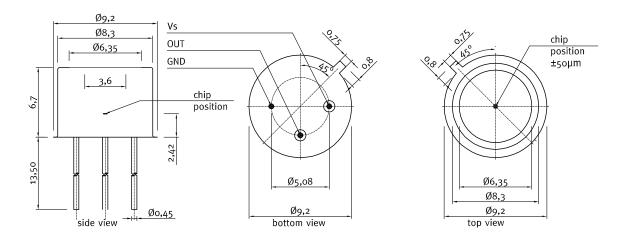

iSweek.com

3/3

TOCON_E_OEM

SiC based UV-Index photodetector with integrated amplifier designed to work with customer's cosine correcting dome

FIELD OF VIEW



Measurement Setup:

lamp aperture diameter: 10 mm distance lamp aperture to second aperture: 17 mm second aperture diameter: 10 mm distance second aperture to detector: 93 mm

pivot level = top surface of the detector window

DRAWING

İSweek www.isweek.com Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China Tel: + 86-755-83289036 Fax: + 86-755-83289052 E-mail: sales@isweek.com